

キーワード:鉄筋コンクリート床版 曲げ 鉄筋継手 機械式 スリーブ

実験場所:清水建設㈱研究所

1.はじめに

鉄筋コンクリート(以下RC)構造の壁や床の鉄筋は重 ね継手が多く用いられている.しかし,重ね継手の曲げ 性能はコンクリートとの付着強度に依存するため,コンパ クトな機械式継手工法が望まれている.写真-1 に機械 式重ね継手を示す.本鉄筋継手は,あらかじめスリーブ に挿通させた鉄筋に対し,スリーブに設けた孔から油圧 機械等を用いてくさびを圧入し,固定する継手である.

写真-1 機械式重ね継手

本実験では、機械式重ね継手(以下 OS フープクリップ)及びフレア溶接継手を引張鉄筋に用いたRC床版の 曲げ載荷試験を行い、双方の剛性・耐力・ひび割れ状 況について比較・検討した.

2.実験概要

2.1 試験体

図-1に試験体形状を示す.試験体は長さ3,000mm× 幅 450mm×厚さ150mmの床スラブとし,建物増築部の 取合を想定し,中央にコンクリート打ち継ぎ面を有す.継 手の中心は,打ち継ぎ面から110mmの位置に設けた.

図-2に継手詳細図を示す. OSフープクリップは2個 継ぎとし,重ね長さは10d(d;鉄筋径),溶接継手は両面 フレア溶接で,溶接長は片面5dとした.

表-1 に試験体一覧,表-2 に鋼材の機械的性質,表-3 にコンクリートの力学特性を示す.

表-1 試験体一覧											
試験体 記号	[、] 継手形式		形式 呼び径		スリー からの 「m	リーブ外面 いらのかぶりか 「mm]		外面 かぶり m]	試験体数		
OS 10-20					2	0	2	3	1		
OS 10-30	00-	,~	D10		3	0	33		3		
OS 10-40	しるノーノ				4	0	4	.3	1		
OS 16-20	う個	シリシノ		クリック			2	0	2	6	1
OS 16-30	김미하	陸丁	[▲] → D16		3	0	3	6	1		
OS 16-40					4	0	46		1		
FW 10-30	フレア		D10		-		33		3		
FW 16-30	溶	溶接		D16		-		6	1		
表-2 鋼材の機械的性質											
11177	瓜び ほん 降化		犬点 引張		強さ降伏び		トずみヤング		ブ係数		
サの担		[N/mm ²]		$[N/mm^2]$		[µ]		[N/r	<u>mm²]</u>		
D	D10 37		5.7	544.5 2020			20	1.94×10^{5}			

D	D16 347.3		530.7		1900		1.94 × 10 ⁵		
	114	表-3	コン	クリー	ートの	力学	的特性	-	
	打設	条件	E縮 [MI	強度 ^p a]	引張 [MF	強度 ^p a]	ヤング [MF	`係数 ^v a]	
	先打	部分	28	.9	2.4	19	2.21 >	< 10 ⁴	
	後打	部分	24	.1	1.8	39	2.14 >	< 10 ⁴	

2.2 実験方法

図-3 に載荷装置概要図を示す.載荷方法は,支持ス パン 2,500mmの試験体に対し,載荷スパンを 800mmと し,中央部の 2 点に集中載荷することとした.なお,支持 点にはテフロン沓,載荷点には \$ 80 ローラーを用い,完 全ピン・ローラーとなるように試験体を設置した.

載荷段階は、①曲げひび割れ発生時 ②主筋降伏時 ③付着ひび割れ発生時 ④コンクリート圧壊時 にそれ ぞれ一度除荷した後、最大耐力が確認できるまで載荷 した.

図-3 載荷装置概要図

2.3 実験結果

D10 試験体(OS10-20,OS10-30,OS10-40,FW10-30) の崩壊過程は、以下のようになった. ①打継ぎ部にひび割れ発生 ②打継ぎ部以外に曲げひび割れ発生

の工印の主体が成小	
③下段の主肋が降伏	
④上段の主筋が降伏	7
⑤載荷点付近の内側上部のコンクリートが圧壊	0
D16 試験体(OS16-20, OS16-30,OS16-40,FW10-30)	ſ
の崩壊過程は,以下のようになった.	þ
①打継ぎ部にひび割れ発生	¥
②打継ぎ部以外に曲げひび割れ発生	Č
③主筋に沿った付着ひび割れ発生	7
④下段の主筋が降伏	
⑤載荷点付近の内側上部のコンクリートが圧壊	*

図-4 及び図-5 にかぶり厚さが異なる場合の荷重-た わみ曲線を示す. D10, D16 ともにかぶり厚さが小さくな っても,荷重-たわみ曲線に大きな変化は見られない.

また,継手部に有害なひび割れは発生せず,たわみ 角が 1/10~1/20 に達するまで変形しても,コンクリートの 剥落は生じなかった.

表-4に各載荷段階での荷重とたわみ量の一覧を示す. これより、いずれの試験体においても、曲げひび割れ発 生荷重及び最大耐力は同程度であるといえる. 本4 実験結果一覧

<u> </u>										
試験体 記号	打継部ひる	び割れ発生	曲げひび割れ発生		主筋降伏		付着ひび割れ発生		最大耐力	
	荷重	たわみ	荷重	たわみ	荷重	たわみ	荷重	たわみ	荷重	たわみ
	[ton]	[mm]	[ton]	[mm]	[ton]	[mm]	[ton]	[mm]	[ton]	[mm]
OS 10-20	0.10	0.12	0.91	1.97	2.06	2.11	\geq	\setminus	2.94	13.1
OS 10-30	0.24	0.45	0.81	1.91	1.92	1.69	\sim	\langle	2.95	14.2
OS 10-40	0.10	0.07	0.80	1.43	2.10	2.36	\sim	\langle	2.81	13.1
FW 10-30	0.31	0.39	0.80	1.59	1.99	1.62		\langle	2.91	11.8
OS 16-20	0.20	0.12	1.00	1.66	4.61	1.93	4.40	1.75	5.95	6.3
OS 16-30	0.15	0.08	0.80	1.23	4.17	1.87	3.60	1.51	5.68	6.0
OS 16-40	0.27	0.31	0.70	1.50	4.50	2.42	4.50	2.42	6.02	6.5
FW 16-30	0.12	0.09	0.80	1.49	4.37	1.89	4.20	1.65	5.87	6.3

写真-2 に各載荷段階におけるひび割れ発生状況を 示す. 写真中央の▽はコンクリートの打継ぎ部を, 右側 の▼は鉄筋の継手中心位置を表す. したがって, 試験 体の左半分が先打部, 右半分が後打部である. これより, 曲げひび割れは打継ぎ部を中心に, 先打部と後打部で 対称をなし, 継手部に大きいひび割れが特に集中する こともなく, ほぼ等間隔に分布していることから, 分散型 であることがわかる.

OSフープクリップ D16 は, 溶接継手より早い時期に 付着ひび割れが発生したが, その後大きく成長すること はなく, 打継ぎ面のひび割れ幅も急増せずに, むしろ先 打部にひび割れが集中した. また, 実験後のはつり出し によって, 継手部の変形やすべり等の異常が無いことを 確認した. 写真-3 に継手部のはつり出し状況を示す.

写真-3 継手部のはつり出し状況

3.まとめ

機械式重ね継手およびフレア溶接を引張鉄筋に用いたRC床版の曲げ載荷実験を行い,剛性,耐力及びひび割れ状況を比較したところ,両者は同等の性能を有していることが確認できた.