OSフープクリップエ法 柱の正負交番繰返し曲げ載荷実験

キーワード:鉄筋コンクリート柱 繰返し 帯筋 鉄筋継手 機械式 スリーブ

1.はじめに

地震時に鉄筋コンクリート橋脚(以下RC橋脚)に大き な変形が生じて塑性ヒンジが形成される場合,せん断補 強鉄筋の定着条件が適切でないと,RC橋脚の変形性 能を確実に確保することはできない.本研究では,工事 現場にて容易に閉鎖型の帯筋を形成できる継手を提案 した.本鉄筋継手はスリーブ内に貫通させた鉄筋をスリ ーブ外側からくさびを圧入し,緊結する継手である.

本報告は、RC柱のせん断補強筋の継手に機械式重 ね継手(以下OSフープクリップ)を用いた試験体と、帯 鉄筋に継手を用いない試験体について、正負交番繰返 し載荷試験を行い、OSフープクリップの耐震性能を評 価したものである.

2.実験概要

2.1 試験体

表-1 に試験体一覧を,図-2 に試験体配筋図を示す. 試験体形状は 410mm×410mm の正方形断面で,試験 体基部から頂部までの全高は 1375mm,試験体基部か ら載荷点位置までの高さは 1225mm, せん断スパン比 3.5 とした. せん断補強筋形状は,OSフープクリップとフ レア溶接(片側 10d)とした.表-2 に鋼材の機械的性質 を,表-3 にコンクリートの力学的性質を示す.

表-1 試験体一覧				
試験体	フレア溶接 OSフープクリップ			
柱断面	410mm×410mm (有効高さ350mm)			
せん断	3.5			
スパン比	(基部から載荷点位置1225mm)			
軸方向	2.04%			
鉄筋比	(12-D19:SD345)			
せん断	d/3=116mm			
補強筋間	(D13@116:SD345)			
破壊モード	曲げ破壊			

表-2 鋼材の機械的性質

呼び径	降伏点	引張強さ	降伏ひずみ	ヤング係数
	[N/mm ²]	[N/mm ²]	[µ]	[N/mm ²]
D19	410	643	2110	1.95×10^{5}
D13	423	640	2230	1.90×10^{5}

表-3 コンクリートの力学的性質

圧縮強度	引張強度	ヤング係数
[MPa]	[MPa]	[MPa]
29.6	2.93	2.86×10^{4}

実験場所:東北大学

2.2 実験方法

載荷は, 試験体頭部を載荷点とする正負交番水平載荷とし, 軸圧縮力は与えていない. 載荷方法は, 部材降 伏変位の1倍(δ_y), 2倍(2δ_y), 3倍(3δ_y), ・・・と降伏 変位の整数倍毎に3回ずつ変位制御で交番載荷した.

なお,降伏荷重および降伏変位は,試験体柱基部の 軸方向鉄筋から測定されるひずみ値が降伏ひずみに最 初に達した時の値とした.

3.実験結果

3.1 ひび割れの進展状況

載荷中の損傷の進展状況について、ひび割れを中心 に観察した結果、継手を用いない試験体およびOSフー プクリップを用いた試験体に差はほとんど認められなか った.試験終了後のOSフープクリップを観察した結果、 配筋時の状態を維持しており、OSフープクリップ内部の 重ね部でのすべり等は見られなかった.また,終局変位 程度の大きな変位を与えても、OSフープクリップを用い たせん断補強筋は,軸方向鉄筋の座屈の進展防止に 有効に機能していた.写真-1 に試験終了後の塑性ヒン ジ部分を示す.

写真-1 試験終了後の塑性ヒンジ

3.2 荷重一変位関係

図-3 にOSフープクリップ及びフレア溶接(片側 10d) 試験体の荷重-変位曲線を示す.これより,履歴曲線の 形状は終局時まで安定した曲げ破壊型の紡錘形ループ を示しており,除荷時の剛性や同一変位での繰返し載 荷による耐力低下の割合も概ね同様であることが分かる.

3.3 せん断補強筋のひずみ分布

図-4 にせん断補強筋のひずみ分布を示す. 試験体の損傷区間から判断して, 試験体柱基部から約 20cm~25cm の範囲で塑性ヒンジが形成されたと考えられる. その区間内のせん断補強筋のひずみ値は, 一部降伏ひずみを超過する値が計測されている. しかし, その程度のせん断力が作用しても, OSフープクリップを有するせん断補強筋が, 軸方向鉄筋の座屈の進展防止や, コンクリートの拘束効果に対して有効に機能していることが確認された.

3.4 エネルギー吸収能および残留変位

荷重-変位関係が同等であることを定量的に評価す るために,耐震性能を評価する際の一つの指標となるエ ネルギー吸収能および除荷剛性(残留変位)の変化を検 討した.図-5 に累積吸収エネルギーの推移,図-6 に残 留変位の推移を示す.これより,フレア溶接及びOSフー プクリップ試験体から得られるエネルギー吸収能と除荷 剛性(残留変位)の変化はほぼ等しくなった.一般的に, RC部材の最大荷重到達以降の履歴特性では,せん断 補強筋の配筋状況により,除荷時剛性や,エネルギー 吸収能が著しく異なる.OSフープクリップを用いたせん 断補強筋は,最大荷重到達以降においても,フレア溶 接とほぼ同等の機能を果たしていることが確認された.

4.まとめ

OSフープクリップをせん断補強筋に用いた試験体は, フレア溶接による試験体と同様に,かぶりコンクリート剥 落後も十分な継手機能を有しており,塑性ヒンジ区間に 配筋されるせん断補強筋の継手として有効に作用する ことが確認された.