

Mechanical lap splicing for rebars

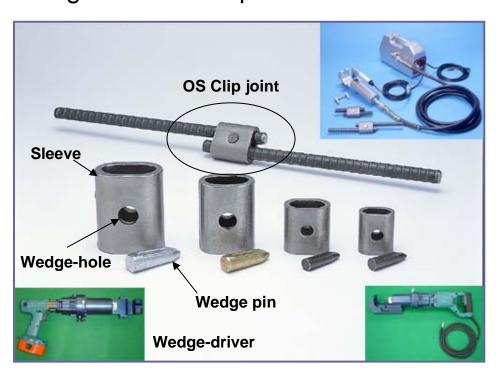
OKABE Splice Clip joint (OS Clip joint)

OKABE Co.,Ltd.

OS Clip joint consists of •••

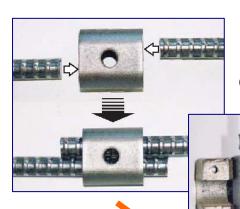
- An oval shaped steel sleeve with a wedge-hole
- A wedge pin

Connection for small diameter Rebars •••

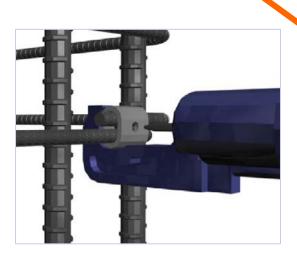

• The sleeve is positioned around two overlapping rebars.

The wedge pin is driven into a wedge-hole with a portable

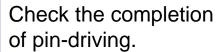
hydraulic wedge-driver, and between the rebars.


Features •••

- Simple and Quick
- High reliability
- Skilled workers not required (Pls be sure to follow instruction)
- Can make under almost any weather condition.
- Certified by Japanese evaluation organization.



OS Clip joint - Installation procedures



Place the sleeve over one end of the rebar; Each bar extends out of the sleeve at least one bar-diameter.

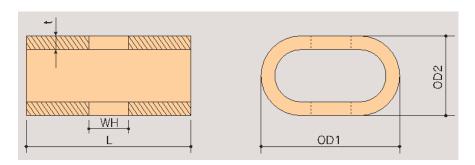
> Place the wedge pin with the wedgedriver.

Operate the wedge-driver.

Unit: mm

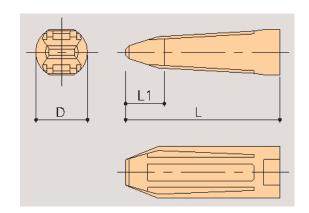
OS Clip joint — Dimensions

Unit: mm


Note: The figures indicats below is JAPAN only.

■ Sleeve

Rebar size	Length "L"	Outer "OD1"	Outer "OD2"	Thickness "t"	Hole Dia. "WH"
D10	35	30	18.2	3.1	10.2
D13	40	39	24.6	4.5	10.2
D16	60	46.3	29	5	14.8
D19	70	56.5	34	6	16.8
D22	80	64.5	39	7	16.8


■Wedge pin

Rebar size	Length "L"	Diameter "D"	"L1"
D10 D13	37	10	12
D16	43	14	10
D19 D22	48	16	10

Scope of rebars to be spliced; JIS G 3112

Grade: SD295A,SD295B,SD345 Nominal size.: D10,D13,D16,D19 Deformation: specified in JIS G 3112

Monotonic tensile test of OS Clip joint in air

As the results of tensile test in air,

- Ultimate strength of OS Clip joint is higher than 135% of the specified yield strength of the rebar.
- Failure case is a rupture of the rebar.
- Under applied stress of about 100MPa, there tends to be softened splice-system caused by the rotation of the splice.

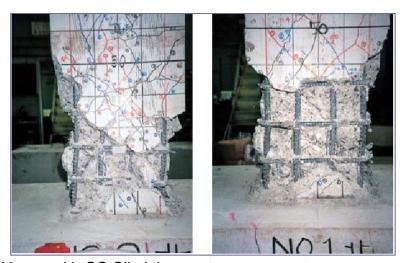
Specimens after tensile test

Main results of tensile test

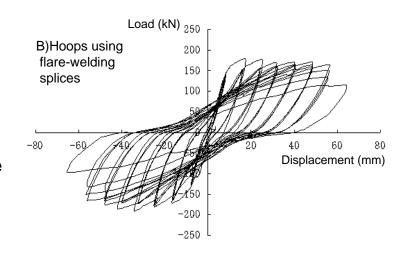
		Specified Value	Specimen *		
			No.1	No.2	No.3
Yield strength of rebar fy		295мРа	373мРа		
Tensile strength of rebar fu		440мРа	522MPa		
Ultimate strength of splice fus			512MPa	509мРа	517MPa
Ratio	fus / fy(specified)		1.74	1.73	1.75
Ratio	fus / fu(specified)		1.16	1.16	1.18
Ratio	fus / fu(actual)		0.98	0.98	0.99

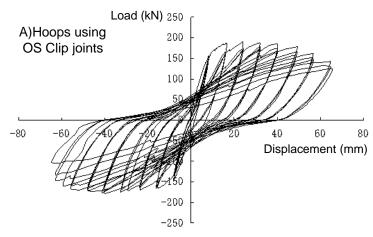
Note * Rebar Grade; SD295A (JIS G3112)

Nominal size; D10


Performance of OS Clip joint (2/3)

Multi-cyclic bending test for RC columns


As the result of multi-cyclic bending test of RC columns; specimen A: hoops using OS Clip joints specimen B: hoops using flare-welding splices


- •OS clip joint eith almost equal performance with bucklingconstraint of longitudinal rebars and confined
- -effect of core-concrete compared with hoops using flare -welding splices.

It is expected that hoops using OS Clip joints shoe effective performance in plastic hinge area.

A) Hoops with OS Clip joints B) Hoops with flare-welding splices Photo) Plastic hinge area after loading

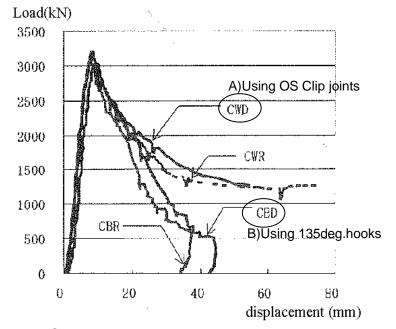
Bending load - displacement relationship

Performance of OS Clip joint (3/3)

Compressive loading test for RC short-columns

As the result of compressive loading test; Hoops of column are fabricated as follows; specimen A: hoops using OS Clip joints, specimen B: hoops using 135deg.hooks

- •Both specimens have approximately the same maximum-strength.
- After reaching the maximum load, load-decrease of specimen A is smaller than that of specimen B, and specimen A maintained about 40% of the maximum load.
- •At specimen B, 135deg.hooks were pulled out form core-concrete of the column.


Hoops with OS Clip joints shou more effective performance in the confinement of core-concrete and buckling-constraint of longitudinal rebars compared with hoops using 135deg.hooks.

A)Hoops with OS Clip joints

B)Hoops with 135deg.hooks *135deg.hooks were pulled out from core-concrete

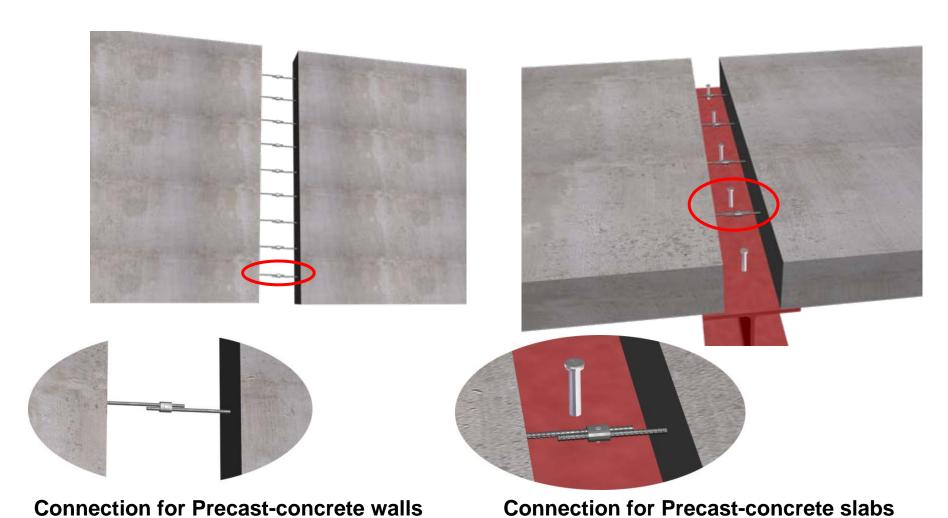
Photo) Hoops and longitudinal rebars after loading

Compressive load – displacement relationship

OS Clip joint — Typical applications in Japan

Hoops for RC Column

Reinforcements for SRC beam-Column joint


Rebar-Cage for Cast-in-place concrete pile

Seismic reinforcement

OS Clip joint — Typical applications in Japan

Copyright (C) 2010 OKABE Co., Ltd.. All rights reserved.